The Conjugacy Relation on Rank 2 Toeplitz Subshifts

Ruiwen Li (joint with Su Gao, Bo Peng and Yiming Sun)

Nankai University

Descriptive Dynamics and Combinatorics Seminar March 18, 2025

Preliminary

★御★ ★理★ ★理★

æ

A (topological dynamical) system is a pair (X, T) such that X is a compact metrizable space and T is an automorphism of X. For $A \subset X$, A is said to be invariant when T(A) = A. (X, T) is minimal if it has no nontrivial closed invariant subset (subsytem).

.

A (topological dynamical) system is a pair (X, T) such that X is a compact metrizable space and T is an automorphism of X. For $A \subset X$, A is said to be invariant when T(A) = A. (X, T) is minimal if it has no nontrivial closed invariant subset (subsytem).

Definition

For two systems (X, T) and (Y, S), if there exists a homeomorphism map f from X onto Y such that fT = Sf, then (X, T) is conjugate to (Y, S).

伺 ト イヨト イヨト

For a finite set A, let S be the left shift action on $A^{\mathbb{Z}}$, i.e.

$$S(x)(n) = x(n+1), \forall n \in \mathbb{Z},$$

then $(A^{\mathbb{Z}}, S)$ is a dynamical system, named Bernoulli shift. By a subshift we mean a subsystem of the Bernoulli shift.

ヨマ イヨマ イヨマ

For $x \in A^{\mathbb{Z}}$, let $\operatorname{Per}_p(x) = \{n \in \mathbb{Z} : \forall m \equiv n \pmod{p} \mid x(m) = x(n)\}$. The *p*-skeleton of *x* is $x \upharpoonright \operatorname{Per}_p(x)$. The periodic part of *x* is $\operatorname{Per}(x) = \bigcup_{n \in \mathbb{N}} \operatorname{Per}_n(x)$. The sequence *x* is a Toeplitz sequence if $\operatorname{Per}(x) = \mathbb{Z}$. A Toeplitz subshift is the orbit closure $\overline{\{S^n x : n \in \mathbb{Z}\}}$ of some Toeplitz sequence *x*.

Open Problem(Sabok-Tsankov)

What is the complexity of the conjugacy relation on Toeplitz subshifts under Borel reduction?

Both the set of minimal subshifts and the set of Toeplitz subshifts are G_{δ} subsets of $K(2^{\mathbb{Z}})$ under the Vietoris topology.

< 注 → < 注 →

Both the set of minimal subshifts and the set of Toeplitz subshifts are G_{δ} subsets of $K(2^{\mathbb{Z}})$ under the Vietoris topology.

Theorem(Curtis-Hedlund-Lyndon)

For a conjugacy map f from a subshift (X, S) to another subshift (Y, S), there is $n \in \mathbb{N}$ and a map φ from A^{2n+1} to A, such that for every $x \in X$ and $k \in \mathbb{Z}$, $f(x)(k) = \varphi(x[k - n, k + n])$.

Both the set of minimal subshifts and the set of Toeplitz subshifts are G_{δ} subsets of $K(2^{\mathbb{Z}})$ under the Vietoris topology.

Theorem(Curtis-Hedlund-Lyndon)

For a conjugacy map f from a subshift (X, S) to another subshift (Y, S), there is $n \in \mathbb{N}$ and a map φ from A^{2n+1} to A, such that for every $x \in X$ and $k \in \mathbb{Z}$, $f(x)(k) = \varphi(x[k - n, k + n])$.

The map φ is called a block code of f.

Theorem (Thomas)

The conjugacy relation on Toeplitz subshifts is not smooth.

・日・ ・ ヨ・ ・ ヨ・

臣

Theorem (Thomas)

The conjugacy relation on Toeplitz subshifts is not smooth.

Theorem(Sabok-Tsankov)

The conjugacy relation on Toeplitz subshifts with separated holes is amenable.

• • = • • = •

Theorem (Thomas)

The conjugacy relation on Toeplitz subshifts is not smooth.

Theorem(Sabok-Tsankov)

The conjugacy relation on Toeplitz subshifts with separated holes is amenable.

Theorem(Kaya)

The conjugacy relation on Toeplitz subshifts with growing blocks is hyperfinite.

• • = • • = •

If A, B are finite alphabets, a morphism $\phi : A^{<\omega} \to B^{<\omega}$ is a map satisfying that $\phi(\emptyset) = \emptyset$ and for all $u, v \in A^{<\omega}$, we have $\phi(uv) = \phi(u)\phi(v)$. We denote $A^{<\omega}$ by A^* .

同 と く ヨ と く ヨ と …

3

If A, B are finite alphabets, a morphism $\phi : A^{<\omega} \to B^{<\omega}$ is a map satisfying that $\phi(\emptyset) = \emptyset$ and for all $u, v \in A^{<\omega}$, we have $\phi(uv) = \phi(u)\phi(v)$. We denote $A^{<\omega}$ by A^* .

A morphism $\phi : A^* \to B^*$ is primitive if for every $a \in A$ and $b \in B$, the element *b* occurs in $\phi(a)$; ϕ is proper if for every $a_1, a_2 \in A$, $\phi(a_1)$ and $\phi(a_2)$ begin with the same element in *B* and end with the same element in *B*; ϕ satisfies the constant length property if for every $a_1, a_2 \in A$, $|\phi(a_1)| = |\phi(a_2)|$.

伺 とうき とうとう

If A, B are finite alphabets, a morphism $\phi : A^{<\omega} \to B^{<\omega}$ is a map satisfying that $\phi(\varnothing) = \varnothing$ and for all $u, v \in A^{<\omega}$, we have $\phi(uv) = \phi(u)\phi(v)$. We denote $A^{<\omega}$ by A^* .

A morphism $\phi : A^* \to B^*$ is primitive if for every $a \in A$ and $b \in B$, the element *b* occurs in $\phi(a)$; ϕ is proper if for every $a_1, a_2 \in A$, $\phi(a_1)$ and $\phi(a_2)$ begin with the same element in *B* and end with the same element in *B*; ϕ satisfies the constant length property if for every $a_1, a_2 \in A$, $|\phi(a_1)| = |\phi(a_2)|$.

Example For a morphism $\tau : \{0,1\}^* \to \{0,1\}^*$ such that $\tau(0) = 001$ and $\tau(1) = 01$, τ is primitive, proper but does not satisfy the constant length property.

A directive sequence is a sequence of morphisms

$$\tau = (\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}},$$

 τ is primitive (proper, constant length) if τ_n is primitive (proper, constant length) for every $n \in \mathbb{N}$.

$$A_0^* \leftarrow A_1^* \leftarrow A_2^* \leftarrow \cdots$$

A directive sequence is a sequence of morphisms

$$\tau = (\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}},$$

 τ is primitive (proper, constant length) if τ_n is primitive (proper, constant length) for every $n \in \mathbb{N}$.

$$A_0^* \leftarrow A_1^* \leftarrow A_2^* \leftarrow \cdots$$

For $n \in \mathbb{N}$, let

$$\tau_{[0,n]} = \tau_0 \circ \tau_1 \cdots \circ \tau_n,$$

then the *S*-adic subshift (X, S) generated by τ is the subshift that for every word $s \in A_0^*$, s is a subword of some point in X if and only if s is a subword of $\tau_{[0,n]}(a)$ for some $n \in \mathbb{N}$ and $a \in A_{n+1}$.

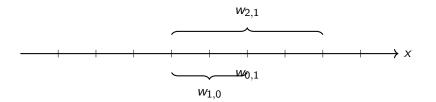
Example

Let $w_{0,0} = 0$, $w_{0,1} = 1$. For $n \in \mathbb{N}$, if $w_{n,0}$ and $w_{n,1}$ have been defined, let $w_{n+1,0} = w_{n,0}w_{n,0}w_{n,1}$ and $w_{n+1,1} = w_{n,0}w_{n,1}$, then $(w_{i,j})_{i \in \mathbb{N}, 1 \leq j \leq 2}$ can be viewed as the directive sequence $(\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ where $A_n = \{0, 1\}$ for every $n \in \mathbb{N}$, $\tau_n(0) = 001, \tau_n(1) = 01$ for every n. Actually $\tau_{[0,n]}(0) = w_{n,0}$ and $\tau_{[0,n]}(1) = w_{n,1}$.

向下 イヨト イヨト

Example

Let $w_{0,0} = 0$, $w_{0,1} = 1$. For $n \in \mathbb{N}$, if $w_{n,0}$ and $w_{n,1}$ have been defined, let $w_{n+1,0} = w_{n,0}w_{n,0}w_{n,1}$ and $w_{n+1,1} = w_{n,0}w_{n,1}$, then $(w_{i,j})_{i \in \mathbb{N}, 1 \leq j \leq 2}$ can be viewed as the directive sequence $(\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ where $A_n = \{0, 1\}$ for every $n \in \mathbb{N}$, $\tau_n(0) = 001, \tau_n(1) = 01$ for every n. Actually $\tau_{[0,n]}(0) = w_{n,0}$ and $\tau_{[0,n]}(1) = w_{n,1}$.



ヨ ト イ ヨ ト イ ヨ ト 一

A subshift is minimal if and only if it is generated by a primitive directive sequence.

同 と く ヨ と く ヨ と

臣

A subshift is minimal if and only if it is generated by a primitive directive sequence.

Fact

A subshift is Toeplitz if and only if it is generated by a proper, primitive and constant length directive sequence.

A directive sequence $(\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ is a rank 2 directive sequence if it is proper, primitive and $|A_n| = 2$ for every $n \ge 1$. Moreover, if $(\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ is constant length, then it is strong rank 2.

A directive sequence $(\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ is a rank 2 directive sequence if it is proper, primitive and $|A_n| = 2$ for every $n \ge 1$. Moreover, if $(\tau_n : A_{n+1}^* \to A_n^*)_{n \in \mathbb{N}}$ is constant length, then it is strong rank 2.

Definition

A (strong) rank 2 subshift is a subshift generated by a (strong) rank 2 directive sequence.

Theorem(Espinoza, Gao-L.)

The set of rank 2 subshifts is a Borel subset of $K(2^{\mathbb{Z}})$ under the Vietoris topology.

• • = •

Theorem(Espinoza, Gao-L.)

The set of rank 2 subshifts is a Borel subset of $K(2^{\mathbb{Z}})$ under the Vietoris topology.

Theorem(Pavlov–Schmieding)

The set of rank 2 Toeplitz subshifts is a comeager subset of infinite minimal subshifts.

Theorem(Hjorth-Kechris)

For every countable Borel equivalence relation E on a Polish space X, there is a generic subset Y of X such that $E \upharpoonright Y$ is hyperfinite.

Theorem(Hjorth-Kechris)

For every countable Borel equivalence relation E on a Polish space X, there is a generic subset Y of X such that $E \upharpoonright Y$ is hyperfinite.

Theorem(Gao-L.-Peng-Sun)

The conjugacy relation on the set of rank 2 Toeplitz subshifts is hyperfinite.

Rank 2 subshift: a rank 2 directive sequence

Toeplitz subshift: a proper, primitive, constant length directive sequence

Combination?

回 とくほとくほと

Theorem(Gao-L.-Peng-Sun)

There is a rank 2 but not strong rank 2 Toeplitz subshift.

Theorem(Gao-L.-Peng-Sun)

There is a rank 2 but not strong rank 2 Toeplitz subshift.

Theorem(Gao-L.-Peng-Sun)

The set of all strong rank 2 subshifts is a dense G_{δ} subset of infinite minimal subshifts.

Step 1: Toeplitz part

ヘロン 人間 とくほどう ほどう

For $p \in \mathbb{N}^*$, p is an essential period of a sequence $x \in A^{\mathbb{Z}}$ if $\operatorname{Per}_p(x) \neq \operatorname{Per}_q(x)$ for every q < p. The scale of a Toeplitz sequence x is the supernatural number $u = lcm(q_i)_{i \in \mathbb{N}}$ where q_i is an enumeration of the essential periods of x. For a supernatural number u, we can fix a canonical factorization $(p_n)_{n \in \mathbb{N}}$ such that $u = lcm(p_n)_{n \in \mathbb{N}}$ and $p_n|p_{n+1}$ for every $n \in \mathbb{N}$.

For $p \in \mathbb{N}^*$, p is an essential period of a sequence $x \in A^{\mathbb{Z}}$ if $\operatorname{Per}_p(x) \neq \operatorname{Per}_q(x)$ for every q < p. The scale of a Toeplitz sequence x is the supernatural number $u = lcm(q_i)_{i \in \mathbb{N}}$ where q_i is an enumeration of the essential periods of x. For a supernatural number u, we can fix a canonical factorization $(p_n)_{n \in \mathbb{N}}$ such that $u = lcm(p_n)_{n \in \mathbb{N}}$ and $p_n|p_{n+1}$ for every $n \in \mathbb{N}$.

 $\forall i \exists j \ p_i | q_j \land \forall i \exists j \ q_i | p_j$

For $p \in \mathbb{N}^*$, p is an essential period of a sequence $x \in A^{\mathbb{Z}}$ if $\operatorname{Per}_p(x) \neq \operatorname{Per}_q(x)$ for every q < p. The scale of a Toeplitz sequence x is the supernatural number $u = lcm(q_i)_{i \in \mathbb{N}}$ where q_i is an enumeration of the essential periods of x. For a supernatural number u, we can fix a canonical factorization $(p_n)_{n \in \mathbb{N}}$ such that $u = lcm(p_n)_{n \in \mathbb{N}}$ and $p_n|p_{n+1}$ for every $n \in \mathbb{N}$.

 $\forall i \exists j \ p_i | q_j \land \forall i \exists j \ q_i | p_j$

Theorem(Williams) For a Toeplitz subshift X and Toeplitz sequence $x \in X$, let $A_{p_n}^i = \{S^{kp_n+i}x : k \in \mathbb{Z}\}$, then $\overline{A_{p_n}^i}$ is a clopen subset of X, and $(\overline{A_{p_n}^i})_{0 \le i \le p_n-1}$ is a partition of X.

伺 ト イヨト イヨト

For a Toeplitz sequence x, an interval $[m_1, m_2]$ on \mathbb{Z} is a maximal p_n -periodic block of x if $[m_1, m_2] \subset \operatorname{Per}_{p_n}(x)$ but $m_1 - 1$ and $m_2 + 1$ don't belong to $\operatorname{Per}_{p_n}(x)$. For a maximal p_n -periodic block $[m_1, m_2]$, consider

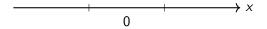
$$A_{p_n}^{\lfloor \frac{m_1+m_2}{2}\rfloor} = \overline{\{S^{kp_n+\lfloor \frac{m_1+m_2}{2}\rfloor}(x): k\in\mathbb{Z}\}}.$$

The collection of all such sets is a subcollection of $(A_{p_n}^i)_{0 \le i \le p_n-1}$, denoted by $\gamma(X, p_n)$.

For a Toeplitz sequence x, an interval $[m_1, m_2]$ on \mathbb{Z} is a maximal p_n -periodic block of x if $[m_1, m_2] \subset \operatorname{Per}_{p_n}(x)$ but $m_1 - 1$ and $m_2 + 1$ don't belong to $\operatorname{Per}_{p_n}(x)$. For a maximal p_n -periodic block $[m_1, m_2]$, consider

$$A_{p_n}^{\lfloor \frac{m_1+m_2}{2}\rfloor} = \overline{\{S^{kp_n+\lfloor \frac{m_1+m_2}{2}\rfloor}(x): k\in\mathbb{Z}\}}.$$

The collection of all such sets is a subcollection of $(A_{p_n}^i)_{0 \le i \le p_n-1}$, denoted by $\gamma(X, p_n)$.



For $\phi \in Sym(A^p)$ and $x \in A^{\mathbb{Z}}$, let $\hat{\phi}(x) \in A^{\mathbb{Z}}$ be such that

$$\hat{\phi}(x)[kp,(k+1)p)=\phi(x[kp,(k+1)p)),orall k\in\mathbb{Z}.$$

Two compact subsets K and L of $A^{\mathbb{Z}}$ are D_p equivalent if there is $\phi \in Sym(A^p)$ such that $\hat{\phi}(K) = L$.

For $\phi\in \textit{Sym}(A^p)$ and $x\in A^{\mathbb{Z}}$, let $\hat{\phi}(x)\in A^{\mathbb{Z}}$ be such that

$$\hat{\phi}(x)[kp,(k+1)p)=\phi(x[kp,(k+1)p)),orall k\in\mathbb{Z}.$$

Two compact subsets K and L of $A^{\mathbb{Z}}$ are D_p equivalent if there is $\phi \in Sym(A^p)$ such that $\hat{\phi}(K) = L$.

The relation D_p is a finite Borel equivalence relation.

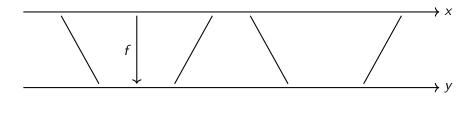
• • = • • = •

For $\phi \in Sym(A^p)$ and $x \in A^{\mathbb{Z}}$, let $\hat{\phi}(x) \in A^{\mathbb{Z}}$ be such that

$$\hat{\phi}(x)[kp,(k+1)p)=\phi(x[kp,(k+1)p)),orall k\in\mathbb{Z}.$$

Two compact subsets K and L of $A^{\mathbb{Z}}$ are D_p equivalent if there is $\phi \in Sym(A^p)$ such that $\hat{\phi}(K) = L$.

The relation D_p is a finite Borel equivalence relation.



The map that sends a growing blocks Toeplitz subshift (X, S) to $(p_n, [\gamma(X, p_n)]_{D_{p_n}})_{n \in \mathbb{N}}$ is a Borel reduction witnessing the hyperfiniteness of the conjugacy relation on growing blocks Toeplitz subshifts

• • = • • = •

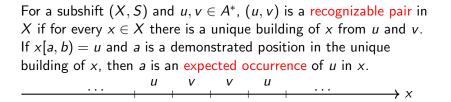
Step 2: Rank 2 Part

Ruiwen Li Rank 2 Toeplitz Subshifts

▲御★ ▲ 国★ ▲ 国★

臣

For a subshift (X, S) and $u, v \in A^*$, (u, v) is a recognizable pair in X if for every $x \in X$ there is a unique building of x from u and v. If x[a, b) = u and a is a demonstrated position in the unique building of x, then a is an expected occurrence of u in x. \dots u v v u \dots x



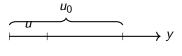
The set of $x \in X$ such that 0 is an expected occurrence of u in x is clopen.

Theorem(Espinoza)

Let (X, S) be a nontrivial rank 2 subshift, then for every $n \in \mathbb{N}$, there is a recognizable pair (u, v) in X such that the lengths of the common prefix and common suffix are greater than n.

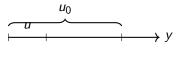
Lemma(Donoso-Durand-Maass-Petite)

Let u and v be different non-empty words satisfying that there is no $w \in A^*$ and $m, m' \in \mathbb{N}$ such that $u = w^m$ and $v = w^{m'}$. Then there exists n < |u| + |v| and $u_0 \in A^n$ such that for any $y, y' \in 2^{\mathbb{Z}}$, if $y(0) \neq y'(0)$, then for all $0 \leq m < n$ we have $\tau(y)(m) = \tau(y')(m) = u_0(m)$ and $\tau(y)(n) \neq \tau(y')(n)$, where τ is the morphism maps 0 to u and 1 to v.



Lemma(Donoso-Durand-Maass-Petite)

Let u and v be different non-empty words satisfying that there is no $w \in A^*$ and $m, m' \in \mathbb{N}$ such that $u = w^m$ and $v = w^{m'}$. Then there exists n < |u| + |v| and $u_0 \in A^n$ such that for any $y, y' \in 2^{\mathbb{Z}}$, if $y(0) \neq y'(0)$, then for all $0 \leq m < n$ we have $\tau(y)(m) = \tau(y')(m) = u_0(m)$ and $\tau(y)(n) \neq \tau(y')(n)$, where τ is the morphism maps 0 to u and 1 to v.



Here u_0 is called the distinguished prefix of u and v, similarly we can define distinguished suffix.

Step 3: Technical Lemma

・日・・ モ・・ モ・

For a Toeplitz subshift (X, S) and Toeplitz sequence $x \in X$, let $\underline{\chi(X, p_n)}$ be the set of all compact subsets of $A^{\mathbb{Z}}$ with the form $A_{p_n}^{\lfloor \frac{m_1+m_2}{2} \rfloor}$ where $[m_1, m_2]$ be one of the **longest** maximal p_n periodic block of x.

白 ト イ ヨ ト イ ヨ ト

For a Toeplitz subshift (X, S) and Toeplitz sequence $x \in X$, let $\underline{\chi(X, p_n)}_{A_{p_n}^{\lfloor \frac{m_1+m_2}{2} \rfloor}}$ be the set of all compact subsets of $A^{\mathbb{Z}}$ with the form periodic block of x.

Lemma

For two rank 2 Toeplitz subshifts (X, S) and (Y, S), (X, S) and (Y, S) are conjugate if and only if they have the same scale and for $n \in \mathbb{N}$ large enough, $[\chi(X, p_n)]_{D_{p_n}} = [\chi(Y, p_n)]_{D_{p_n}}$.

$$\xrightarrow{V_0 \quad v \quad u \quad u_0} \rightarrow x$$

$$\xrightarrow{\tilde{V}_0 \quad \tilde{v} \quad \tilde{u} \quad \tilde{u}_0} \rightarrow y$$

Step 4: The reduction

・ 回 ト ・ ヨ ト ・ ヨ ト ・

The map that sends a rank 2 Toeplitz subshift (X, S) to $(p_n, [\chi(X, p_n)]_{D_{p_n}})_{n \in \mathbb{N}}$ is a Borel reduction witnessing the hyperfiniteness of the conjugacy relation.

通 とう ほとう きょう

Thank You!

ヘロト ヘロト ヘヨト ヘヨト

æ